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TRAJECTORIES OF AN UNGUIDED PROBE 
WITH A DAMPING CABLE 

S. A. Shargarovskii and A. N. Temnov UDC 629.7.087.22 

The relative orbital motion of two point masses connected by a flexible nonexpadable weightless cord 

with shock contacts is considered. This system models, .for example, the dynamics of a satellite and a 

probe connected by a cable. The orbit o f  the center of  mass is assumed to be circular. The motion of  

the probe relative to the center of  mass can be presented as a series o f  portions of.fi'ee motion between 
successive contacts, i.e., as the probe recedes from the satellite to a distance equal to the cable length. 

At the time of  establishing contact, there is shock interaction, which can be of  various nature - per- 

fectly elastic, perfectly inelastic, and with partial absolption of  energy. 

We consider a portion of free motion, i.e., while the cable connecting the probe and the satellite is not 
stretched. We will assume the orbit of the center of  mass of the system, point O, to be circular and motion of 
the probe to occur in the plane of this orbit. Let a system of coordinates O, q, ~, ~ whose axes are directed 
all the time along the radius-vector of the orbit of  the satellite (~), the transversal (~), and the binormal to the 
plane of the orbit (~) be related to the center of  mass of the satellite-probe system. 

We introduce dimensionless coordinates and dimensionless velocity of  the center of mass of  the probe 

--- (¢ ' ,  n ' )  = v 
lmo/(m + m o) ' o~0l " 

For a circular orbit of the satellite in the case of  plane motion of the probe, the current coordinates 1"1 and ~ of 
the probe satisfy the equations ll] 

q " - 2 ~ ' - 3 q  = 0 ,  ~"+ 2 q ' =  O. 
(l) 

The primes in ( i )  denote derivatives with respect to the dimensionless time "c = o~t, where o~1 is the angular 
velocity of motion of the center of mass of the system around its orbit; here the dimensionless orbital period 
is 2n. The integral of energy in the form of 

,2 ~ (2) q + ~'~- - 3q" = h = const.  

follows from Eqs. (I).  Equations ( t )  describe the motion of the probe only until the cable is stretched. They 
can easily be integrated 

q = 2c I + c~ sin z + c 3 cos x ,  ~ = c 4 - 3c~x + 2c 2 cos z - 2c 3 sin "~. (3) 

Here the arbitrary constants cl, c2, c3, and c 4 are expressed in terms of the initial (at ~ = 0) data as follows: 

i 

cl = 2qo + ~ ,  c2 = q O '  
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c 3 = - 3 q  o - 2 ~ ,  c 4 = ~ -  2 r i o .  (4) 

All the statements above on the motion of  the probe refer to its free motion. In the general case, the 

probe inevitably moves away from the center o f  mass o f  the system (the probability o f  reaching the periodic 

trajectory is low) and at a certain instant of  time it will move away to the full length o f  the cable. Further 

behavior of the probe greatly depends on the elastic properties o f  the cable, i.e., by tbrmulation, on the cha- 

racter of shock when the system establishes contact. 
We consider the behavior of  the system at the time of  shock. We know the solution (3) o f  the system 

o f  equations (1) that describes the tree motion of  the probe until the cable is stretched. Using this solution, 

from the condition 1"12+ {2 = 1 we can find the instant o f  time "c, at which the probe moves  away from the 

center of  mass of  the system to a distance 1 equal to the cable length. In this case, "~, satisfies the equation 

9c-lx~ + 3cg_ cos- x, + 3c3 sin- x, - 6c2c 3 cos "~, sin x, - 12czc2"c, cos x, + 

+ 12qczX, sin ~, + 4 (clc 3 + C2C4) COS 't, -k- 4 (ClC 2 + c3c4) sin x, - 6ClC4"C, + 

'~ 2 2 2 
C-~ + C 3 + C 4 - -  + 4c~ + _ I = 0 (5 )  

Hence, determining numerically Xn = ~* for the nth portion o f  the trajectory, we can write the corre- 

sponding values o f  the coordinates and velocities 

tin = 2c 1 + c 2 sin X, + C 3 COS "17 n , ~ n  = C4 - -  3c~xn + 2c2c°s "~n - 2c3 sin z,,,  

]'In = C2 COS ~n --  C3 sin x,,, ~ = - 3c I - 2c 2 sin "c. - 2c 3 cos "c~. 

At the instant o f  time x,, dependine~ on the assumed character o f  shock the velocity component  ,,rn, directed 

along the cable away from the center of  mass o f  the system, reverses its direction and varies in magnitude. The 

transverse component of  velocity v~, directed along the normal to the stretched cable, still persists. Now, we 

can write the initial data (coordinates and velocities) at the beginning of  the next (n + 1) portion of  flee motion 

x ," r ( 6 )  
~.+1 = ~ . '  q . + l  = q . .  V.+j = V . .  V,,+l = - -  # % .  

Here k is the restoration factor, a quantity which is determined by the character o f  the shock:  k = 1, a perfectly 

elastic shock, k = 0, a perfectly inelastic shock, and 0 < k < 1, a shock with partial absorption of  energy. The 

character of  the shock will depend on the properties o f  the cable and its ability to damp. 
Having written the equation of  velocity variation with shock, after simple transformations we obtain the 

equations of  velocity variation in shock interaction 

(7) 

Equations (7) for the case of  a perfectly elastic shock are given in [1]. 

As a result we obtain the constructed algorithm {P--~n÷I, v-~+l} = ~{P-~,, v-~,} o f  calculation of  successive 

shocks: 
1) knowing the initial coordinates and velocities for the nth portion o f  the trajectory, we find the time 

o f  shock xn by formula (5); 
2) using formulas (6), we find the initial data for the next (n + 1) portion o f  the trajectory {~nn+l, v-~n+l}, 

etc. 
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Fig. l. Trajectory of  the probe at h = -1.5,  
= 0.5 (c). 
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Fig. 2. Trajectory of  the probe at h = 2.5, k = 1 (a), k = 0.9 (b), and k = 

0.5 (c), 

It is characteristic of  a perfectly elastic shock (k = 1) that in motion, the integral o f  energy (2) remains 

constant not only on the portions of free motion, but also when contacts are established. In shock, the trans- 
verse component o f  velocity varies neither in magnitude nor in direction, whereas the radial component ,  re- 

maining constant in magnitude, reverses its direction. Figures la and 2a present, for comparison with the case 
k;~ I, some possible periodic trajectories tbr tl = -1 .5  and h = 2.5. 

With a perfectly inelastic shock (k = O) there is only one portion o f  free motion, since at the time of  

the very first contact the radial component o f  velocity, by virtue o f  shock inelasticity, will be damped com- 
pletely and the system will move as a solid unit. The model of  a "rigid" orbital cable system (OCS) is appro- 

priate for describing the motion of this cable system. 

In the case o f  a shock with partial absorption o f  energy ( 0 < k <  1), the constant energy will remain 
invariable only on the portions of  free motion. At the time of  shock it will begin to change, constantly decreas- 

ing due to the damping of  the radial component o f  velocity with a succession of  shocks. The degree o f  velocity 
damping depends on the ability of  the cable to damp, i.e., on the material the cable is made of  and its structure 

(number of  threads and layers and method of  thread laying). At a certain stage o f  motion the radial component 

of  velocity will become negligibly small and then the model of  a "rigid" OCS can be used for describing fur- 

ther motion (similar to a perfectly inelastic shock). But in this case transition to a "rigid" OCS is accomplished 
with the very first shock, while with partial absorption of  energy - only after a series o f  these shocks. The 

transition time depends on the tbllowing conditions: the characteristics of  the cable (restoration factor), the 

constant energy, and the initial values of  motion parameters. In the case o f  identical constant energy and cha- 
racteristics o f  the cable, the transition time will be larger if the velocity o f  motion at the initial instant is di- 

rected along the radius-vector. 

Figure lb and c presents the trajectories o f  motion at different restoration factors, k = 0.9 and k = 0.5 

for h = -1.5 and the initial conditions (~1, rl0) = (0, 1), ( ~ ,  rli~) = (0.32, -1 .18) ,  and Fig. 2b and c shows the 

trajectories o f  motion at h = 2.5, k = 0.9, k = 0.5 and the initial conditions (~0, rl0) = (0, 1), (~-o0, rl~)) = 

(-0.49, -2.29).  The time of  transition to a "rigid" OCS will be maximum at some nonmaximum value o f  the 

85 



radial component of velocity. We note that the dependences of the transition time on the restoration factor and 
the direction of velocity at the initial instant significantly differ at negative and positive h. 

N O T A T I O N  

O q ~ ~, orbital system of coordinates; r-~, radius-vector of the center of mass of  the probe relative to the 
center of mass of the system; ~,, velocity vector of the center of mass of the probe; rl, ~, dimensionless coor- 
dinates of the center of mass of the probe; v--~, dimensionless velocity vector of the center of mass of the probe; 
"~, dimensionless time; m, mass of the probe; m0, mass of the satellite; 1, length of  the cable; h, value of  the 
integral of energy; k, restoration factor. 
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